
Revisiting Query Scheduling Policies for Lambda Functions

Karan Bavishi
kbavishi@wisc.edu

Abstract

Serverless computing has become an increasingly
popular way of deploying applications because of
reduced costs and deployment ease. Application
developers need to only worry about the event-
handling logic in ‘functions‘, while the infrastruc-
ture provider takes care of the rest. Serverless com-
puting reduces costs because developers only pay
for CPU time when these functions are executing
and not for idle capacity.

However, current query scheduling algorithms
such as FIFO can result in higher costs for functions
which execute only short queries. In this paper, we
explore an alternative scheduling policy based on
Earliest Deadline First, which also tries to exploit
buffer pool locality by comparing predicates.

We show that such a policy can improve the me-
dian job turnover time by about 5.6×. But without
the use of idle insertion time, it can result in about
2.7× worse turnover times in the 99th percentile.

1 Introduction

Ever since AWS launched its Lambda platform [3]
in 2014, serverless computing has become a hot
topic, promising easier deployment and reduced
costs. Serverless computing refers to a new gen-
eration of platform-as-a-service offerings, such as
Google Cloud Functions [7], Azure Functions [4]
and IBM OpenWhisk [8], where code is deployed
as ‘functions’ that operate as event handlers.

The infrastructure provider takes responsibility
for most of the hosting and server logic, such as
receiving client requests and responding to them,

capacity planning, task scheduling and operational
monitoring. The application developer only needs
to worry about about the logic for processing client
requests. Thus, instead of deploying continuously-
running servers, we deploy ‘functions’ that operate
as event handlers, and only pay for CPU time when
these functions are executing.

This new pricing model of not having to pay for
idle capacity has made its way to cloud DBaaS
providers too. New DBaaS offerings, such as
Google BigQuery [6], AWS Athena [2] and Fau-
naDB [5], have emerged which only charge based
on the number of queries run and the amount of data
scanned by those queries.

In this paper, we argue that commonly used
query scheduling policies such as FIFO are unfair
for short-lived lambda functions, and can result in
higher costs. Researchers have shown that Shortest
Job First (SJF) can be used to improve response time
for shorter queries [19], but can cause starvation for
long jobs.

We explore an alternative scheduling policy
based on Earliest Deadline First (EDF), where we
use the expected query completion time as the dead-
line. We also explore a buffer pool locality aware
scheduling policy, which can exploit predicate sim-
ilarity across queries to reduce the overall response
time.

We show in Section 4.3 that non-preemptive EDF
can improve median job turnover time by about
5.6×. However, the 99th percentile and the max
turnover time in EDF is 4.3× and 4.2× worse than
FIFO respectively. Using predicate similarity as a
way to exploit buffer pool locality, we show that lo-

1

cality aware EDF improves 75th percentile and 99th
percentile job turnover times by 8% and 1.6× over
EDF.

The organization of this paper is as follows.
In Section 2, we provide a deeper background of
serverless computing and build motivation for why
alternative scheduling policies are needed. In Sec-
tion 3, we discuss the preliminary design of our
locality-aware scheduler. Section 4 discusses the
experimental methodology and our initial results.
Section 7 describes the plan of this project before
the submission deadline.

2 Background & Motivation

In this section, we discuss the rise of computing
with an alternative pricing model where you only
pay based on what you use, and how the current
query scheduling policies are ill-suited for such
computing models.

2.1 The rise of pay-per-actual-use comput-
ing

Lambda Functions - In 2014, Amazon Web Ser-
vices (AWS) launched its Lambda platform [3] and
this has spearheaded a new generation of platform-
as-a-service offerings, such as Google Cloud Func-
tions [7], Azure Functions [4] and IBM OpenWhisk
[8]. These offerings are often referred to by the mar-
keting term of “serverless computing”.

Serverless computing refers to a new way of de-
ploying services where the where the infrastructure
provider takes responsibility for most of the ser-
vice logic, such as receiving client requests and re-
sponding to them, capacity planning, task schedul-
ing and operational monitoring. The application de-
veloper only needs to worry about about the logic
for processing client requests. Thus, rather than
continuously-running servers, we deploy functions
that operate as event handlers, and only pay for CPU
time when these functions are executing. Applica-
tion developers are no longer responsible for man-
aging the server process that listens to a TCP socket,
hence the name ‘serverless’.

This pricing model where you only pay based on
your usage and not for idle time can drastically re-
duce the hosting and operating costs. For example,

Figure 1: Job turnover time for different scheduling
policies

Adzic et. al [11] describe a case study of a London-
based social networking company, which reduced
their hosting costs from $5000/month to less than
$200/month, resulting in savings of more than 25×.

Going forward in this document, we will refer to
these serverless offerings by the term lambda func-
tions or lambdas for generality.

Cloud DBs with pay-per-query pricing - In re-
cent years, database-as-a-service (DBaaS) offerings
by cloud providers [1, 9] have become increasingly
popular because of their lower operational costs as
compared to hosting an RDMBS in-house, and their
ability to scale-out on demand. The pricing model
for these services generally involves having to pay a
fixed price per hour based on the time the database
is on.

Similar in spirit to the pricing model of lambda
services of not having to pay for idle capacity, new
DBaaS offerings have emerged which only charge
based on the number of queries and the amount of
data scanned. These offerings, such as Google Big-
Query [6], AWS Athena [2] and FaunaDB [5], are
better suited for lambdas and offer the potential to
reduce costs significantly.

2.2 Unsuitability of current scheduling
policies

Unfairness towards short-lived lambdas - Lambdas
are charged based on the amount of time the func-
tion runs before it terminates. This means that a
function will be charged even if it is sleeping wait-
ing for a response from another service such as a
database. It is known that traditionally used query
scheduling policies such as FIFO hurt the response
times for short queries [19].

FIFO can end up increasing the response times
for short-lived lambdas with short queries, and thus

2

Figure 2: Exploiting buffer locality in SJF for im-
proving job turnover time

increasing their execution time and the amount of
money charged. To build motivation for this, we
consider an example as shown in Figure 1. We have
three queries A, B and C which run for 30 msec, 10
msec and 10 msec respectively. We consider two
scheduling policies for a uniprocessor-like system,
where the queries A, B and C arrived in that order.
Using FIFO results in an average job turnover
time of 30+40+50

3 = 40msec, whereas SJF results
in an average turnover time of 10+20+50

3 = 26.6msec.

Exploiting buffer pool locality in query schedul-
ing - Researchers have shown that query execution
time can wary widely depending on the the num-
ber of pages already cached in the buffer pool [27].
DBaaS providers can exploit buffer pool locality
across queries to reorder query scheduling and re-
duce overall turnover time.

To build motivation for this, we consider an ex-
ample as shown in Figure 2. We have three queries
A, B and C which are all expected to run for 10
msec each. Using SJF results in an average turnover
time of 10+20+30

3 = 20msec. However, if query A
and C had a similar predicate match for instance,
we could reduce the execution time for C because
some of the pages would already be cached in the
buffer pool. Thus a locality-aware SJF scheduler
would schedule C to run after A, and thus reduce
the overall turnover time. For example, if running
C after reduces its completion time to 5 msec as
shown in Figure 2, we get an average turnover time
of 10+15+25

3 = 16.6msec.

3 Preliminary scheduler design

We implement an external scheduler on top of the
query fetch module in OLTPBench [16], which is

used by worker threads to pull queries to be run.
This external scheduler is similar to Gatekeeper
[19]. It queues up incoming queries and schedules
them using pre-established client connections to the
RDBMS. We can support multiple query scheduling
policies in our scheduler as described in the follow-
ing subsection.

3.1 SJF Variant: Smallest Finish Time

Database query scheduling algorithms are often
non-preemptive as most RDBMS do not support
query pre-emption and resuming from the point of
suspension. It is well known that using simple non-
preemptive scheduling policies like FIFO can result
in large response times for short queries [?]. Re-
searchers have also shown that alternative policies
such as Shortest Job First (SJF) can be used to im-
prove the response times for short queries dramat-
ically, but SJF can end up unfairly penalizing long
jobs [19].

Preemptive EDF has been shown to be an opti-
mal scheduling policy [23]. However, there are two
main problems with using EDF. First, it requires
accurate job deadlines or completion times. Sec-
ond, it does not work for systems which do not sup-
port pre-emption such as databases. Therefore we
use a non-preemptive version of Earliest Deadline
First (EDF) in our system instead. Non-preemptive
EDF has been shown to be non-optimal especially
during high loads without the use of idle insertion
times [22], but we leave such improvements to fu-
ture work.

We use the estimated completion time of a query
as its deadline. In other words, Tdeadline = Tarrival +
Qruntime, where Qruntime represents the expected time
for the query to complete. We use the query plan
costs reported by PostgreSQL to estimate the query
completion time. We assume a linear relationship
between the query plan cost and query completion
time for now. We use some offline measurements
of the OLTPBench Twitter benchmark to derive the
slope of the linear relationship.

It has been shown in prior work that using query
plan costs leads to poor estimates of query execu-
tion time [21]. In theory, we can easily replace
this with an online query execution time estimator
like in [19] or use machine learning models [20] to

3

improve such estimates. We leave experimentation
with more accurate completion time modules to fu-
ture work.

3.2 Breaking down queries in lambdas

It may be beneficial to break down traditional join
queries into independent queries to allow better
query scheduling based on exploiting buffer pool lo-
cality.

1 SELECT ∗ FROM t w e e t s
2 WHERE u i d IN (
3 SELECT f2 FROM f o l l o w s
4 WHERE f1 = 42) ;

Listing 1: Query Version 1

1 SELECT f2 FROM f o l l o w s
2 WHERE f1 = 4 2 ;

Listing 2: Query Version 2.1

1 SELECT ∗ FROM t w e e t s
2 WHERE u i d IN (0 , 1 , 2 , 3 9 , 4 5) ;

Listing 3: Query Version 2.2

As an example, we demonstrate two versions of
the GetTweetsFromFollowing job in Figure 3.2
and Figure 3.2, Figure 3.2 respectively. The first
version (Version 1) uses a nested query which re-
sults in a join between the tweets and follows

relations. The second breaks down the query into
two parts (Version 2.1 and Version 2.2), where the
second uses the results of the first. Expressing the
query in this form allows a scheduler to reorder
queries if there were previously run queries with
similar predicates. We can exploit this to arrive at
different cost estimates based on the similarity of
the predicates.

3.3 Exploiting buffer pool locality via
predicate comparison

Query execution times are known to vary wildly de-
pending on the number of pages cached in the buffer
pool [27]. Higher the number of pages cached, the
lower the execution cost will be. We can use this ef-
fect to refine our cost estimates for queries, and thus
ultimately optimize the query schedule.

As described in Section ??, we test against
a benchmark with one very commonly occurring

query, namely the GetTweetsFromFollowing job.
Our scheduler compares the predicates of a query of
the form in Figure 3.2 with the predicates of previ-
ously run queries of the same form.

The cost of queries such as in Figure 3.2 largely
depends on the number of predicates. In other
words, the cost is of the form Costq = A + n ∗ B,
where n is the number of predicates and A and B are
constants.

We incorporate matched predicates into this cost
by reducing cost for each matched predicate. Thus
the new cost formula is:

Costq = A+(norig − nmatch
discount f actor)∗B

Here norig and nmatch are the original number of
predicates and the number of matched predicates re-
spectively. We choose an initial value of 2 for the
discount factor. Experimentation with other values
for the discount factor is left as future work.

4 Preliminary Evaluation

4.1 OLTPBench Twitter

The Twitter benchmark in OLTPBench [16] is in-
spired by the popular micro-blogging website. It
generates a synthetic dataset based on the character-
istics of an anonymized snapshot of the Twitter so-
cial graph. It reflects important characteristics such
as heavily skewed many-to-many ”follow” relation-
ships. We generate a data set consisting of 10 mil-
lion tweets and 250,000 users, which translates to a
database of size 3 GB.

The description and the frequency distribution of
each query type in the workload is given in Table 1

4.2 Methodology

This section describes the methodology used for ex-
perimenting with different scheduling policies and
using predicate matching for buffer locality.

Machine setup - We use a VM with 1 vCPU, 1
GB RAM and 10 GB HDD, running Linux 4.4.0-
98 for our experiments. There is not enough RAM
to hold the Twitter database (3 GB) in memory. We
use a dedicated hypervisor node in CloudLab [28] to
host our VM, and thus avoid interference from other

4

Query Type Description Freq
Get Tweet Get tweet with

given tweet id

0.25%

Get Tweets
From Follow-
ing

Get tweets from
followers for uid

91.00%

Get Followers Get follower uids

for given uid

0.25%

Get User
Tweets

Get tweets for
given uid

7.50%

Insert Tweet Insert tweet for
given uid

1.00%

Table 1: Twitter Query Mix

VMs. We set the CPU governor to performance in
the hypervisor to disable the power save mode and
downclocking.

RDBMS - We use PostgreSQL [10] version 9.5
as the RDBMS inside the VM. The main reason
for this choice was that it was an open-source
RDBMS which also provided query plan costs to the
user. The latter is used in our non-preemptive EDF
scheduling algorithm to estimate the query comple-
tion time. We configure PostgreSQL to use 256 MB
for its shared buffer space, and keep default values
for the other configuration settings.

Experimental methodology - We use OLTPBench
to generate a query trace, and then reuse the same
trace for all of our experiments to avoid making any
incorrect conclusions. We run the benchmark with
10 client terminals. The chosen query arrival rate is
75 req/sec, which is close to the peak performance
rate of the system (78.3 req/sec).

We run the Twitter benchmark for 3 different
query scheduling algorithms: FIFO, EDF and pred-
icate locality-aware EDF. For each experiment, we
measure the job turnover time for each query that
is run to completion. We run 10 experiments for
each setting, and combine the measurements for all
the 10 runs. Before starting a run, we restart Post-
greSQL and dump all OS and filesystem caches.

4.3 Results

The CDF of query turnover times for FIFO, EDF
and predicate locality-aware EDF is shown in Fig-

Figure 3: Job turnover time CDF for different
scheduling policies

Policy 50%ile 75%ile 99%ile Max
FIFO 3.99 5.49 7.07 12.91
EDF 0.71 5.28 30.19 53.34
Pred Loc-
aware EDF

0.72 4.92 19.24 44.82

Table 2: Twitter Job turnover time (sec)

ure 3, and the percentile turnover times are listed in
Table 2. The important observations are discussed
below.

First, both EDF and predicate locality aware EDF
improve median job turnover time by about 5.6×.
This improvement shows that both algorithms im-
prove turnover times for short queries as expected.

Second, using EDF results in significantly poor
tail turnover times. The 99th percentile and the max
turnover time in EDF is 4.3× and 4.2× worse than
FIFO respectively. This is because we use a non-
preemptive version of EDF which has been shown
to penalize long jobs in overloaded systems without
the use of idle insertion time [22]. Testing with an
EDF version which uses idle insertion time like in
[18] is future work.

Third, our approach of using predicate similarity
to exploit buffer pool locality does seem to result
in better query scheduling. Using predicate similar-
ity improves 75th percentile and 99th percentile job
turnover times by 8% and 1.6× over EDF. However
this approach still suffers from the weaknesses of
EDF of penalizing long jobs especially during high
loads.

5

5 Deadline-aware scheduler

As seen in Section 4.3, Shortest Job First and its
variant we tested Smallest Finish Time end up hav-
ing significantly worse response times for anything
beyond the 80th percentile. The main reason behind
the poor performance of SJF is that it ignores dead-
lines associated with given queries. Most queries in
Lambda Functions either have an implicit deadline
due to the configured timeout for the Lambda, or
have an explicit deadline specified via the timeout
parameter specified using the query execution API

An optimal scheduler would be deadline-aware,
drop queries during high loads and try to maxi-
mize the number of deadlines met. We look to re-
search from the area of real-time scheduling with
soft deadlines for inspiration to design this optimal
query scheduler for Lambdas.

5.1 Group EDF (gEDF)

Researchers have found that Earliest Deadline
First (EDF) is an optimal policy for preemptive
scheduling scenarios. However, we need to con-
sider non-preemptive scheduling policies because
most databases do not support preempting running
queries and then resuming them from suspension.
Unfortunately, it has been proven that there is no
such optimal policy for non-preemptive schedul-
ing, and the problem of finding an optimal non-
preemptive schedule is NP-hard. Previous efforts
have found that using EDF in a non-preemptive set-
ting can provide good results, but only in lightly
loaded systems [?]. During heavy loads, EDF per-
forms worse than simpler scheduling policies such
as FIFO.

Instead, we focus on an alternative scheduling
policy called Group EDF [?]. Group EDF (gEDF) is
a hybrid between EDF and SJF. First, queries with
similar deadlines are put in the same group. To
schedule a query, we first select the group with the
earliest deadline. Then we use SJF to break ties be-
tween queries within the same group. It has been
shown that gEDF outperforms EDF in terms of the
fraction of query deadlines met especially during
high loads.

Figure 4: Job turnover time CDF for different
scheduling policies

Policy 50%ile 75%ile 99%ile Max
FIFO 0.09 1.72 12.06 13.86
EDF 0.08 0.14 1.59 7.53
Pred Loc-
aware EDF

0.07 0.12 1.72 7.27

Table 3: Twitter Job turnover time (sec)

5.2 Evaluation: Lightly Loaded System

We first evaluate the performance of EDF in a
lightly loaded system, and compare its performance
to FIFO. We again run the OLTPBench Twitter
benchmark as per the methodology described in
Section ??. We also extend EDF by adding pred-
icate locality awareness and measure its impact. To
simulate a lightly loaded system, we run the Twitter
benchmark at roughly 50 transactions per second,
which is close to half of the peak handling capacity
of our PostgresSQL database.

EDFsettings - For both EDF and gEDF, we need
to know the deadline of each input query. We con-
figure Tdeadline for each query to be as follows:

Tdeadline = Tarrival +Dmultiplier ∗ExecTime

Here Tarrival represents the arrival time of the
query and ExecTime represents the expected exe-
cution time for the given query. Dmultipler can be
used to tune the strictness of the deadline query. A
smaller value of Dmultiplier represents a stricter dead-
line. In our experiments below, we use Dmultiplier =
10.

The CDF of query turnover times for FIFO, EDF
and predicate locality-aware EDF is shown in Fig-
ure 4, and the percentile turnover times are listed in

6

Table 3. The important observations are discussed
below.

First, using EDF can reduce the 75th percentile
response time by 12×. This is similar to the im-
provements we saw with using SJF. Second, EDF
does not suffer from bad tail performance as we saw
with SJF in Section 4.3. This is because EDF drops
queries if it doesn’t expect to meet their deadlines.
The dropping of queries occurs when the database
is initially warming up, and the queries are taking
longer to execute. Third, adding predicate locality
awareness to EDF doesn’t seem to help improve re-
sponse times.

6 Evaluation: Heavily Loaded System

Non-preemptive EDF has been shown to perform
well only in lightly loaded systems, and is known to
perform badly during high loads [?, ?]. Group EDF
(gEDF) was shown to be able to meet more query
deadlines than EDF especially during high loads
[?]. In this section, we compare the performance
of EDF with gEDF in a heavily loaded system. We
measure the fraction of queries whose deadlines are
met under different system loads.

gEDF settings - In gEDF, two queries Qi and Q j

with deadlines Di and D j respectively belong to the
same group if either of the two following conditions
are true:
1. Di <= D j <= (Di +Gr ∗Di), or
2. D j <= Di <= (D j +Gr ∗D j)

Gr is referred to as the group range parameter,
and we select Gr = 0.4 similar to [?]. We continue
to use Tdeadline and Dmultiplier = 10 as described in
Section 5.2.

Load Variation - We vary the load on the sys-
tem by running the Twitter benchmark as specified
in Section ?? at different input rates. We vary the
input transaction rates from 100 transactions / sec
to 200 transactions / sec. The former is very close
to the peak capacity of the system and the latter rep-
resents twice the peak capacity.

The results for the comparison between EDF and
gEDF is shown in Figure 5. We can see that as the
load on the system increases to twice the peak ca-
pacity (200 qps), gEDF is able to meet 79% of its in-
put query deadlines. On the other hand, EDF is only

Figure 5: Percentage deadlines met for different
loads

Figure 6: Impact of locality awareness on response
time percentiles: gEDF vs. predicate locality aware
(PLA) gEDF

able to meet 44% of its deadlines. This shows that
gEDF is very efficient at dropping queries whose
deadlines it won’t be able to satisfy.

We also evaluate the impact of predicate local-
ity awareness by comparing the response time per-
centiles of gEDF and predicate locality aware gEDF
(PLA gEDF). The results are shown in Figure 6.

Locality awareness helps improve tail response
times. The 99th and 99.9th percentile times at the
peak capacity (100 qps) for gEDF are lower than
EDF by 18% and 21% respectively. Locality aware-
ness seems to have slightly lesser impact at higher
loads. At 200 queries per second, the 99th and
99.9th percentile times for gEDF are lower than
EDF by 14% and 18% respectively.

7

7 Plan Ahead

In this section, we describe the plan going forward.
The items are arranged in their decreasing order of
priority:

• EDF with idle insertion - As was shown in Sec-
tion 4.3, non-preemptive EDF can result in sig-
nificantly worse turnover times for the 75th and
99th percentile in heavily loaded systems. Our
plan is to explore an alternative policy such as
clairvoyant EDF [18] which involves the use of
idle insertion time.

• Online query execution time estimator - Cur-
rently, we use a static execution time estimator
based on the cost plans reported by the opti-
mizer. Alternatively, we could use an online
estimator which revises the estimates based on
runtime stats like in [19].

• Generic method for cost reduction due to
buffer pool locality - Currently, we only
demonstrated the potential of exploiting buffer
pool locality by specifically looking at match-
ing predicates. We aim to build a more
generic cost matrix which computes reductions
based on common indices, predicates and other
things.

8 Related Work

Scheduling and admission control has been been
studied before by database researchers. McWherter
et al [26] study various lock and CPU scheduling
policies for TPC-C and TPC-W workloads. We ar-
gue that our chosen benchmark, the Twitter bench-
mark in the OLTPBench suite [16], is more repre-
sentative of modern web workloads than the TPC-W
benchmark which has been marked obsolete since
2005. Elnikety et. al [19] use a transparent proxy
called Gatekeeper which intercepts requests and
provides admission control and request scheduling.
Gatekeeper uses SJF to reduce response times for
short queries, and uses an aging mechanism based
on bounding the maximum service times for long
queries. We argue that our EDF policy can work
without over-penalizing long queries or needing any
tuning for aging mechanisms. These works also

ignore any potential gains due to exploiting buffer
pool locality between queries.

Exploiting Query Interactions - Qshuffler [12, 13]
uses statistical modeling techniques to capture both
the positive and negative impact of query inter-
actions, and use that to develop an interaction-
aware query scheduler. However, using statistical
modeling to understand interactions between OLTP
queries may become in-feasible because of the po-
tentially large number of query instances possible
due to differing query parameters.

Our system tries to exploit locality across buffer
pool pages by reordering queries based on the sim-
ilarity of predicates of previously run queries. This
idea of exploiting buffer pool locality is not new.
Buffer-pool aware Query Optimization is studied in
[27], where the authors explore the idea of using the
number of cached pages to change query plan costs.

Our Earliest Deadline First (EDF) scheduling
policy relies on getting reliable estimates for query
completion times. There has been significant re-
search in the area of estimating query progress and
completion times [15, 24, 25, 21, 30]. Luo et. al
[24] describe an approach to estimate progress for a
single query, by breaking down the query plan into
various non-blocking pipelines and using the query
optimizer‘s cost estimates to determine progress.
They extend this to a multi-query setting in [25],
by accounting for resources assigned to multiple
queries in the current mix.

We use the query plan cost as an estimate for the
query completion time. Wu et. al [21] discuss the
problems associated with using the query optimizer
for estimating completion times, and suggest tuning
the default RDBMS cost parameters. Other work
[?, 14, 17, 20, 29] employs predictive frameworks
based on statistical machine learning techniques for
better execution time predictions. These techniques
are complementary to our study, and can be easily
integrated in our work to determine more accurate
estimates and thus allow better query scheduling.

References

[1] Amazon RDS. https://aws.amazon.com/rds/.

[2] AWS Athena. https://aws.amazon.com/athena/.

[3] AWS Lambda. https://aws.amazon.com/lambda/.

8

[4] Azure Functions. https://azure.microsoft.com/en-
us/services/functions/.

[5] FaunaDB. https://fauna.com/serverless.

[6] Google BigQuery. https://cloud.google.com/bigquery/.

[7] Google Cloud Functions.
https://cloud.google.com/functions/.

[8] IBM OpenWhisk. https://openwhisk.apache.org.

[9] Microsoft Azure SQL Database.
https://azure.microsoft.com/en-us/services/sql-database/.

[10] PostgreSQL. http://www.postgresql.org.

[11] ADZIC, G., AND CHATLEY, R. Serverless computing:
Economic and architectural impact. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software En-
gineering (New York, NY, USA, 2017), ESEC/FSE 2017,
ACM, pp. 884–889.

[12] AHMAD, M., ABOULNAGA, A., BABU, S., AND MU-
NAGALA, K. Modeling and exploiting query interactions
in database systems. In Proceedings of the 17th ACM
Conference on Information and Knowledge Management
(New York, NY, USA, 2008), CIKM ’08, ACM, pp. 183–
192.

[13] AHMAD, M., ABOULNAGA, A., BABU, S., AND MU-
NAGALA, K. Interaction-aware scheduling of report-
generation workloads. The VLDB Journal 20, 4 (Aug.
2011), 589–615.

[14] AKDERE, M., ETINTEMEL, U., RIONDATO, M., UP-
FAL, E., AND ZDONIK, S. B. Learning-based query per-
formance modeling and prediction. In 2012 IEEE 28th
International Conference on Data Engineering (April
2012), pp. 390–401.

[15] CHAUDHURI, S., KAUSHIK, R., AND RAMAMURTHY,
R. When can we trust progress estimators for sql queries?
In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data (New York, NY,
USA, 2005), SIGMOD ’05, ACM, pp. 575–586.

[16] DIFALLAH, D. E., PAVLO, A., CURINO, C., AND

CUDRE-MAUROUX, P. Oltp-bench: An extensible
testbed for benchmarking relational databases. Proc.
VLDB Endow. 7, 4 (Dec. 2013), 277–288.

[17] DUGGAN, J., CETINTEMEL, U., PAPAEMMANOUIL,
O., AND UPFAL, E. Performance prediction for con-
current database workloads. In Proceedings of the 2011
ACM SIGMOD International Conference on Manage-
ment of Data (New York, NY, USA, 2011), SIGMOD ’11,
ACM, pp. 337–348.

[18] EKELIN, C. Clairvoyant non-preemptive edf schedul-
ing. In 18th Euromicro Conference on Real-Time Systems
(ECRTS’06) (2006), pp. 7 pp.–32.

[19] ELNIKETY, S., NAHUM, E., TRACEY, J., AND

ZWAENEPOEL, W. A method for transparent admission
control and request scheduling in e-commerce web sites.
In Proceedings of the 13th International Conference on
World Wide Web (New York, NY, USA, 2004), WWW
’04, ACM, pp. 276–286.

[20] GANAPATHI, A., KUNO, H., DAYAL, U., WIENER,
J. L., FOX, A., JORDAN, M., AND PATTERSON, D.
Predicting multiple metrics for queries: Better decisions
enabled by machine learning. In Proceedings of the
2009 IEEE International Conference on Data Engineer-
ing (Washington, DC, USA, 2009), ICDE ’09, IEEE
Computer Society, pp. 592–603.

[21] HACIGUMUS, H., CHI, Y., WU, W., ZHU, S., TATE-
MURA, J., AND NAUGHTON, J. F. Predicting query
execution time: Are optimizer cost models really unus-
able? In Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE 2013) (Washing-
ton, DC, USA, 2013), ICDE ’13, IEEE Computer Soci-
ety, pp. 1081–1092.

[22] JEFFAY, K., STANAT, D. F., AND MARTEL, C. U. On
non-preemptive scheduling of period and sporadic tasks.
In [1991] Proceedings Twelfth Real-Time Systems Sym-
posium (Dec 1991), pp. 129–139.

[23] LIU, C. L., AND LAYLAND, J. W. Scheduling algo-
rithms for multiprogramming in a hard-real-time environ-
ment. J. ACM 20, 1 (Jan. 1973), 46–61.

[24] LUO, G., NAUGHTON, J. F., ELLMANN, C. J., AND

WATZKE, M. W. Toward a progress indicator for
database queries. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of
Data (New York, NY, USA, 2004), SIGMOD ’04, ACM,
pp. 791–802.

[25] LUO, G., NAUGHTON, J. F., AND YU, P. S. Multi-query
SQL Progress Indicators. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006, pp. 921–941.

[26] MCWHERTER, D. T., SCHROEDER, B., AILAMAKI,
A., AND HARCHOL-BALTER, M. Priority mechanisms
for oltp and transactional web applications. In Proceed-
ings. 20th International Conference on Data Engineering
(March 2004), pp. 535–546.

[27] RAMAMURTHY, R., AND DEWITT, D. J. Buffer-pool
aware query optimization. In CIDR 2005, Second Bien-
nial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 4-7, 2005, Online Proceed-
ings (2005), pp. 250–261.

[28] RICCI, R., EIDE, E., AND THE CLOUDLAB TEAM. In-
troducing CloudLab: Scientific infrastructure for advanc-
ing cloud architectures and applications. USENIX ;login:
39, 6 (Dec. 2014).

[29] TOZER, S., BRECHT, T., AND ABOULNAGA, A. Q-cop:
Avoiding bad query mixes to minimize client timeouts
under heavy loads. In 2010 IEEE 26th International Con-
ference on Data Engineering (ICDE 2010) (March 2010),
pp. 397–408.

[30] WU, W., CHI, Y., HACÍGÜMÜŞ, H., AND NAUGHTON,
J. F. Towards predicting query execution time for con-
current and dynamic database workloads. Proc. VLDB
Endow. 6, 10 (Aug. 2013), 925–936.

9

